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Terminology

Volcanic eruptions

... are events when magma
exits the ground (Siebert et al.,

2015)

Very diverse

4
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2021 Fagradalsfjall

Effusive eruptions

- Non-explosive
- Tropospheric emissions

- Recent eruptions have been found

to significantly impact clouds (e.o.
Malavelle et al., 2017; Chen et al., 2022)

2010 Fimmvorduhals

(=]

aerosol modified
clouds

Volcanic
eruption

Cloud droplet radius (pm)
5 10 15 >20
MODIS, Schmidt et al. (2012),

South Sandwich Islands
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Emissions from effusive
volcanic eruptions

gas phase: [ ® ® ®

Tropospheric OH > S0, ® o
volcanic aerosols ° ® o o
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\_/ ° o o °
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Tephra

+more

Effusive
volcanic
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Motivation

Thordarson and Larsen (2007):

* 35 of 205 eruptions (ca. 17%)
in Iceland over the past 1100 Effusive eruptions
years effusive or mixed are relatively rare

* The rest is explosive

However

* Several prominent effusive y €0 Krafla, Holuhraun,
events in recent decades Reykjanes peninsula

* Very large basalt formations ~
formed in effusive eruptions

lasting years e.g. Skjaldbreidur,
* Strong increase in bingvallahraun,
volcanism after the retreat bjorsarhraun

of ice age glaciers (11 kyr
BP)



Motivation

Thordarson and

ca. 10 kyr BP Skjaldbreidur >10 yrs (?)

1783-84 Laki 8 months

2014-15 Holuhraun 181 days

2021 Fagradalsfjall 183 days

2024 Sundhnuksgigar (VI) 14 days
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Motivation

Alot has

happened

in the past
decade

<

\.

1783-84 Laki
2014-15 Holuhraun

2021 Fagradalsfjall

2024 Sundhnuksgigar (VI)

ca. 10 kyr BP Skjaldbreidur >10 yrs (?)

8 months
181 days
183 days

14 days

August 22,
2024

?

122 Tg
9.6 Tg

0.97 Tg

0.4 Tg (?)

(34 minutes 28
old) -

Credit: Almannavarnir/Bjorn Oddsson

Thordarson and
Hdéskuldsson (2008)
+ own est.

25 kt/day (?)

~500 kt/day Thordarson and

Self (2003)
53 kt/day Pfeffer et al. (2018)
5.3 kt/day Pfeffer et al. (2024)

Own est. based on
lava volume

30 kt/day (?)

https://vedur.is/um—vi/frettir/jardhraeringar—grim%



Motivation

Alot has
happened

in the past
decade

<

\.

ca. 10 kyr BP Skjaldbreidur >10 yrs (?) ? 25 kt/day
1783-84 Laki 8 months 122 Tg ~500 kt/d

2014-15 Holuhraun 181 days 9.6 Tg 53 kt/da

2021 Fagradalsfjall 183 days 0.97 Tg 5.3 kt/de

2024 Sundhnuksgigar (VI) 14days 0.4Tg(?) 30 kt/day

August 22,
2024
(34 minutes

old)
~1.A K0

Credit: Almannavarnir/Bjérn Oddsson /
https://vedur.is/lum-vi/frettir/jardhraeringar-grindavik

! Collaboration solved Ar: x v x

+

C QO & nyalesundresearc B % 5 o»

Written by: Ingrid Kjerstad, The Norwegian Polar Institute
22.04.2025

Monday 26 of August 2024 something happened to the visibility in Ny-
Alesund Research Station. For the untrained eye it could look like fog, but the
instruments at the atmospheric labs in the station revealed another story. The

image below reveals some of the phenomenon.
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OPEN Arctic warming from a high-
latitude effusive volcanic eruption

Tomas Zoéga®"", Trude Storelvmo® & Kirstin Kriiger™*

ion in ities of sulfur into the troposphere
during the fall and winter of 2014-15. Previous studies have shown that the resulting volcanic
aerosols insolation, ing, through i

reflectance, mostly North Atlantic and £ L Arctic,
which at the time of the eruption received limited sunlight. Based on evidence from observations and
g liquid water path and cloud cover following
the led ing i i trapping of longwave
radiation. Our results show that sulfur emissions from the eruption led to extended lifetime of low
i , reducing the longwave radiati ing of the surface. This is the first time,
to our knowledge, that an effusive volcanic eruption is shown to have this effect. Given the high level
ic activity in Iceland, need to further investigate the climate
impacts of M
seeding has been ted way b ge but, as our results
suggest, fons might have i

A case study of the
2014-15 Holuhraun
eruption in Iceland
using observational and
modelling evidence
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Abstract. Effusive, long-lasting volcanic eruptions impact climate through the emission of gases and the subse-
quent production of aerosols. Previous studies, both modelling and observational, have made efforts to quantify
these impacts and untangle them from natural variability. However. due to the scarcity of large and well-observed
effusive volcanic eruptions, our understanding remains patchy. Here, we use an Earth system model to system-

A modelling study of
the climate response to
Holuhraun-like
eruptions as a function
of eruption season
and size

Published in Atmospheric
Chemistry and Physics

https://doi.org/10.5194/acp-25-2989-2025
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Climate state dependent response to very large Icelandic

effusive volcanic eruptions

Témas Zoéga', Trude Storelvimo!?, Kirstin Kriiger!
! Department of Geosciences, University of Oslo, Osla, Norway

2Nord University Business School, Nord University, Bodgp, Norway

Key Points:

- Arctic winter warming due to effusive volcanic eruptions is amplified under pre-

industrial climate compared to the present day and future.

A modelling study of
the modulating effects
of the climate state on
the climate response to
Holuhraun-like
eruptions

In review at Geophysical
Research Letters
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Holuhraun: A case study

Abnormally warm
September to November
(SON) 2014 over the Nordic
Seas, both in direct
observations (+2 to +3°C) and

the ERAS reanalysis (up to
+2°C)

Also positive temperature
anomalies in the free-

running CESM2 simulations
(up to +2°C)

U

f_______-

I A contribution from the
| Holuhraun eruption?

\________

)

CESM: SON mean surface air temperature response

ERA5: SON mean surface air temperature in 2014
to the Holuhraun eruption from 10 free-running members

relative to the 1984-2013 climatology
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Holuhraun: A case study

Satellite retrievals show

. prominent and widely
significant decrease in
cloud droplet size

. considerable and partially
significant increase in
cloud LWP

Anomalies broadly
captured by
nudged CESM2
simulations

—>

Maximum
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Holuhraun: A case study

Satellite retrievals show

—‘/\ @

Maximum
SO; column

Cloud droplet effective radius
anomalies

----- Insignificant at 95%
A Holuhraun

(b)

| 28]
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Holuhraun: A case study

Volcanic )
emissions
v
( SO, aerosol A :
mass —
( increases )

7000 Insignificant at 95%
—— T anomalies: +1°C

Ice fraction
" (eruption mean): 0.15

- o (kgkm?)
A D52 A0N 123 b

response

Coupled, free-running
CESM2 simulations help
identify mechanisms
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Holuhraun: A case study Coupled, free-running

CESM2 simulations help
identify mechanisms

; Cloud
. s )
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emissions droplets
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Holuhraun: A case study

Coupled, free-running
CESM2 simulations help
identify mechanisms

Cloud
Volcanic ) : t Size of cloud response ( Liquid water h
emissions droplets _ path
of SO; ) P decreases - (_ Increases )
! 3 Precipitation
e N\ L delayed
SO« aerosol Number of Cloud cover
mass —> | cloud droplets increases
9 increases D 9 increases \_ )

/Vertically integragted cloud\ /Low level Mid Ievel\

liquid water path cloud cover cloud cover

0°

20°w

18



Holuhraun: A case study

Coupled, free-running
CESM2 simulations help
identify mechanisms

: Cloud
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Holuhraun: A case study
Notes on the cloud adjustments

13 Pink: Eruption 2014
' == —dinr_ /dinN, = 0.33 (0.12-1.30), (Twomey r., effect) Black: No eruption
Med. = 1.27 :
12 dinLWP/dInN, = 0.02 (-0.26—+0.33), (LWP adjustment)
2 11 F l dinCF/dinN, = 0.41 (0.05-1.53), (CF adjustment) " 55451 i
s ed. = 1.
10 === = = = = @ = = = = === e = == - - e = (e = = == - - - - -———
Med. = 1.00 = a1 00
ed. =1. <=L
0.9 [ Med. = 0.92 Med. = 1.00
Med. = 0.99 | |
N, £ LWP CF

Cloud property

Cloud properties in October 2014 over ocean
areas around Iceland from Chen et al. (2022)

(Fig. 3)
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Holuhraun: A case study
Notes on the cloud adjustments
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Holuhraun: A case study

Summary

Observations and reanalysis show
warming of up to +2°C over the
Greenland Sea in the fall of 2014

Using CESM2 simulations and satellite data,
this study finds that the Holuhraun
eruption most likely contributed to this
warming signal through increased trapping
of LW radiation by low level clouds under
limited sunlight

These results indicate that large, high-
latitude effusive volcanic eruptions, similar
to the 2014-15 Holuhraun eruption, might
have disproportionally strong climate
impacts in the Arctic
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Sensitivity to season and size:
A modelling study

Atmos. Chem. Phys., 25, 2989-3010, 2025 Atmospheric
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Abstract. Effusive, long-lasting volcanic eruptions impact climate through the emission of gases and the subse-
quent production of aerosols. Previous studies, both modelling and observational, have made efforts to quantify
these impacts and untangle them from natural variability. However, due to the scarcity of large and well-observed
effusive volcanic eruptions, our understanding remains patchy. Here, we use an Earth system model to system-
atically investigate the climate response to high-latitude, effusive volcanic eruptions, similar to the 2014-2015
Holuhraun eruption in Iceland, as a function of eruption season and size. The results show that the climate re-
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SenSlthlty to season and size Ideal Holuhraun-like emissions

1007 [— Ideal (x1)
0 §~ 80 1
A follow up to Paper |, § S 601
exploring the climate £
response to Holuhraun-like éﬁ% 401
eruptions as a function of "X 20-
eruption season and size 0

1 0 1 2 3 4 5 6 7
Months since start of eruption

Start Mar Jun Sep Dec
/1\\ /1\\ VAARN VAARN
Scaling  x1 x5 x25 x50 x1 x5 x25 x50 x1 x5 x25 x50 x1 x5 x25 x50

x1  Holuhraun

x5  Midway between Holuhraun and Laki

x25 As large or larger than the largest Icelandic eruptions®
x50 Rivals the largest known eruptions on Earth®
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SenSlthlty to season and size Ideal Holuhraun-like emissions

1007 [— Ideal (x1)
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exploring the climate £
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eruptions as a function of "X 20-
eruption season and size 0
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x50 Rivals the largest known eruptions on Earth®
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Sensitivity to season and size

Monthly mean
responses to the
x5 eruptions in the

Arctic (north of the
Arctic circle)
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Sensitivity to season and size

Summer (JJA) and
winter (DJr)
anomalies in the
Arctic as a
function of
eruption size
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Sensitivity to season and size

Summary

* The climate response to high-latitude
effusive volcanic eruptions is strongly
modulated by different seasons

- Especially prominent in the Arctic where
the forcing is of opposite sign between
winter and summer

* The magnitude of the climate response
becomes less sensitive to variations in
eruption size as eruptions become larger

- Levels out between x20 and x30
Holuhraun
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