Ny Ålesund Atmosphere flagship – Discussions 06-06-2024

Precipitation in Ny Ålesund:

Temperature dependence and synoptic patterns

Research Scholar

Arctic Ocean-atmosphere interaction group

MoES-National Centre for Polar and Ocean Research

Goa, India

Past and Ongoing studies from our group

- > Precipitation studies
 - Extreme precipitation case studies
 - Tropospheric connection of precipitation
 - Vertical evolution of precipitation
- > Arctic tropics teleconnections
- > Fjord studies Observations and ROMS model
- ➤ Arctic large-scale ocean and atmospheric circulation studies
- ➤ Sea-Ice Ocean modelling studies using MOM.

Atmospheric measurements of NCPOR in the Arctic 2013 to present

Instruments for precipitation-related measurements

Over The Top (OTT) Parsival disdrometer—ground – 1min

Micro Rain Radar (MRR) − up to 6km − 1 min data

Ceilometer – 15km- 6 sec data

RiS ID 12263: Monitoring Arctic precipitation (MAP)

Available data

OTT-Parsivel (2018 – present)

- Precipitation intensity
- Precipitation type
- Radar reflectivity
- MOR visibility
- Number of particles detected
- Kinetic energy

Micro Rain Radar (2013 – present)

- Particle size
- Reflectivity
- Fall velocity
- Vertical Precipitation profile

Radiometer – up to 10km (2014 - present)

- Air Temperature profile
- Humidity profile
- Wind profile
- Pressure profile

Ceilometer – up to 15km (2015 - present)

Cloud base height

Acknowledgement

Arctic Amplification:

Long-term trend in Precipitation – Temperature in Ny Alesund

MET – NORway daily observations

- Cold season has increasing air temperature and precipitation.
- Hot season has increase in wet days

Temperature Saturation vapour pressure exponentially 1°C temperature 7% in precipitation

> 99th percentile Extreme precipitation

80th to 99th percentile Heavy precipitation

50th to 80th percentile Moderate precipitation

10th to 50th percentile Weak precipitation

20 bins of dew point temperature and precipitation are constructed and plotted

- o Daily P-T relation for extreme events follow CC scaling in cold season
- Beyond 0°C there is a dip in precipitation in cold season and beyond 4
 °C in hot season.
- For a small temperature range -4 °C to 4°C rain in hot season exceeds
 CC scaling
- O Snow-DewT scaling follows P-T scaling pattern.

NORway daily observations

50th to 80th percentile

Dew Point Temperature (°C)

Precipitation (Rain+Snow)

Rain

- For high resolution data in the past 6 years scaling is not observed in any season.
- The dip in precipitation is observed beyond 0 °C in the cold season and 8 °C during rain and 4°C during snow in the hot season

Snow

Dew Point Temperature (°C)

Self Organising Maps - Synoptic atmospheric patterns during extreme precipitation weather events

Studying Ny Ålesund using Polar WRF – Pseudo Global Warming Experiment

For the Pseudo Global Warming (PWG) Experiment, the temperature fields of initial and boundary conditions are perturbed by +2°C (PGWR+2) (Schär et al, 1996).

~4mm increase in precipitation with
2 degree increase in temperature

87°N

do1

- ~50% increase in precipitation
- Surface air temperature < 0

2012 Jan event – Top extreme precipitation event.

- ~10mm increase in precipitation with 2 degree increase in temperature
- 71% increase in precipitation
- Surface air temperature > 0

The precipitation observed by MET- NORway was **98mm** on this day but it was not represented in ERA5 data which was used as boundary conditions for PWRF run.

Concluding Remarks

- o Long records of daily precipitation and temperature helps us to study the long trends in Ny Ålesund.
- o CC scaling analysis is conducted extensively on P-T relationship in Ny Ålesund and scaling is observed in cold season extreme events daily data.
- Analysis of case-studies of extreme events identified distinct synoptic patterns strong bocking over northern
 Europe and southwesterly moisture/temperature advection to Ny Ålesund.
- SOMs helped to identify the synoptic patterns similar to the composite analysis but at times different patterns during extreme precipitation.
- o Polar WRF simulations help to quantify the increase in precipitation intensity w.r.t. temperature. For high intensity events happening in a warm atmosphere the increase in precipitation with 2°C temperature perturbation is high.
- All the data from our instruments are available on NPDC site. Upon request we can provide you the required data.