

Remote sensing of clouds in Ny-Ålesund (with radars) RiS 10523, 12554

Kerstin Ebell, Rosa Gierens¹, Giovanni Chellini², Stefan Kneifel³, Mario Mech, Sabrina Schnitt, Linnea Bühler and many more, with special thanks to the AWIPEV team!

University of Cologne, Institute of Geophysics and Meteorology

(now at 1: Centre for Research on Energy and Clean Air, 2: Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Gif-Sur-Yvette; 3: Meteorologisches Institut, Ludwig-Maximilians-Universität, München)

Cloud and precipitation radars at AWIPEV

94 GHz cloud radar (JOYRAD94 or MiRAC-A)

06/2016 – 10/2018 06/2019 –

→ vertical distribution of clouds, precipitation (up to 12 km height)

35 GHz cloud radar (NYRAD35)

10/2021 - 03/2024

02/2025 -

- vertical distribution of clouds, precipitation (up to 10 km height)
- → polarimetric variables
- → elevation scanning capability
- → in combination with 94 GHz cloud radar, info on ice habit, particle concentration and sizes

Universitä[.]

continuous operation, 24/7

24 GHz Micro Rain Radar (MRR) 05/2017 –

→ vertical distribution of precipitation in lowest 1 km

Quicklook browser https://atmos.meteo.uni-

Cloud radar Doppler spectrum

The Doppler spectrum S(v) is ordinarily regarded as a reflectivity-weighted distribution of the radial velocities of the scatterers in the pulse volume

Cloud radar moments of Doppler spectrum

12:00

UTC

15:00

18:00

21:00

00:00

0th moment: mean received power

$$\overline{P} = \int_{-\infty}^{\infty} S(v) v^0 \, dv \propto Z$$

$$\Rightarrow Z_e = 10 \log \left(\frac{z_e}{1^{mm^6}/m^3} \right)$$

1st moment: mean Doppler velocity

$$\overline{v}_D = \frac{1}{\overline{P}} \int_{-\infty}^{\infty} S(v) v \, dv$$

2nd centered moment: variance of Doppler velocity

$$\sigma_D^2 = \frac{1}{\overline{P}} \int_{-\infty}^{\infty} S(v) (v - \overline{v})^2 dv$$

→ detection and amount of column liquid water

03:00

Cloudnet products

Illingworth et al. (2007)

Cloud occurrence at Ny-Ålesund

Monthly frequency of cloud occurrence at Ny-Ålesund June 2016 - Dec 2023

adapted/updated from Wendisch et al. (2023)

average monthly cloud occurrence

any cloud	78.2 %
liquid	13.3 %
ice cloud	47.5 %
mixed-phase	41.8 %

→ liquid water in clouds frequently occur in winter, even at temperatures well below 0°C!

Vertical hydrometeor occurrence

attention: no discrimination between cloud and precipitation

Monthly frequency of hydrometeor occurrence at Ny-Ålesund June 2016 - Dec 2023

Vertical hydrometeor occurrence

Mean occurrence June 2016 - Dec 2023

highest cloud occurrence <2km: 50% between 500 – 1000 m

Persistent low-level mixed phase clouds (P-MPCs)

Gierens et al. (2020)

- Analysis period: June 2016 October 2018
- auxiliary information from microwave radiometer, ceilometer, radiosondes, reanalysis (→ circulation weather type classification)
- P-MPCs occur 23% of the time, most common in summer (32%)
- most often during westerly free-tropospheric winds

Impact of surface coupling state on P-MPCs

- coupling state from θprofile from surface obs, MWR, radiosonde
- 63% of P-MPCs decoupled
 → particularly in autumn and winter (higher lower tropospheric stability)
- 15% coupled
 → higher values in summer (~30%)
- coupled P-MPCs are closer to the surface
- coupled P-MPCs have a higher LWP

Gierens et al. (2020)

Precipitation formation in low-level MPCs

- role of individual ice-growth processes (aggregation, riming,..) still unclear
- Doppler radar obs. at mutliple wavelength can constrain the microphysical processes → particle size, fall speed

How?

Radar reflectivity factor and scattering

- (Equivalent) Radar reflectivity factor (Z_e) is defined in a way that Z_e is independent of frequency (for Rayleigh scattering! \rightarrow D $\ll \lambda$)
- Once λ≈D, resonance effects cause a slower and more complex increase of Z_e with size

Transition region of two frequencies, with one still in the Rayleigh regime and the other one not
 → information on particle size

Dual-wavelength ratio

 dual-wavelength ratio DWR (in dB) gives information about mean particle size

$$DWR_{\lambda_1,\lambda_2} = 10log \frac{Z_{e,\lambda_1}}{Z_{e,\lambda_2}}$$
 (with z_e in linear units of mm⁶/m³)

$$DWR_{\lambda_1,\lambda_2} = Z_{e,\lambda_1} - Z_{e,\lambda_2}$$
 (with Z_e in dBZ)

Reminder:

$$Z_e = 10\log\left(\frac{z_e}{1 \, mm^6/m^3}\right)$$

- → relation between DWR and particle size is not unique
- → depends on particle shape, density, and PSD shape
- → DWR is also enhanced by differential attenuation which accumulates with increasing distance from the radar (can be corrected)

Chellini et al. (2022)

DWR and T in low-level MPCs

- 3-year data set
- enhanced DWR signatures in lowlevel MPCs whose mixed-phase layer is at temperatures between −15 and −10°C
 - → enhanced aggregation due to mechanical entanglement of ice particles with dendritic branches
- dynamical processes relevant to the formation of these larger aggregates
 → Chellini and Kneifel (2024)

Low-level mixed-phase clouds at the high Arctic site of Ny-Ålesund: a comprehensive long-term dataset of remote sensing observations

Chellini et al. (2023a,b)

Chellini et al. (2022)

<u>Universitä</u>

New measurement highlight

GRaWAC: G-band Radar for Water Vapor and Arctic Clouds

Differential Absorption Radar (DAR)

→ vertical profile of water vapor in cloud layer

Outlook: campaign activities

Intensive Observation Period: Water Vapor in all its phases IOP4H2O (with University of Leipzig), Feb-March 2025, Ny-Ålesund

- → 35 GHz (K), 94 GHz (W), and 167/174 GHZ (G) radar
- → additional radiosonde launches

References

Chellini, G. and S. Kneifel, 2024: **Turbulence as a key driver of ice aggregation and riming in Arctic low-level mixed-phase clouds, revealed by long-term cloud radar observations**. Geophys. Res. Lett., 51, e2023GL106599. https://doi.org/10.1029/2023GL10659

Chellini, G., R. Gierens, K. Ebell, T. Kiszler, P. Krobot, A. Myagkov, V. Schemann, and S. Kneifel, 2023b: Low-level mixed-phase clouds at the high Arctic site of Ny-Ålesund: A comprehensive long-term dataset of remote sensing observations, *Earth Syst. Sci. Data*, 15, 5427–5448, https://doi.org/10.5194/essd-15-5427-2023

Chellini, G., R. Gierens, K. Ebell, T. Kiszler, S. Kneifel, 2023a: Low-level mixed-phase clouds at the high Arctic site of Ny-Ålesund: A comprehensive long-term dataset of remote sensing observations. *Zenodo*, https://doi.org/10.5281/zenodo.7803064

Chellini, G., R. Gierens, and S. Kneifel, 2022: **Ice Aggregation in Low-Level Mixed-Phase Clouds at a High Arctic Site: Enhanced by Dendritic Growth and Absent Close to the Melting Level**, *J. Geophys. Res.: Atmos.*, 127, e2022JD036860, https://doi.org/10.1029/2022JD036860

Illingworth, A. J., et al., 2007: **Cloudnet**. *Bull. Amer. Meteor. Soc.*, 88, 883–898, https://doi.org/10.1175/BAMS-88-6-883.

Schnitt et al. 2024 in prep for AMT: GRaWAC: **G-band Radar for Water Vapor Profiling and Arctic Clouds**, in preparation for *Atmos. Meas. Tech.*

Universitä **zu Kölr**